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Fluid mechanics of the cochlea. Part 1 

By M. B. LESSER? AND D. A. BERKLEYt 
Bell Telephone Laboratories, Whippany, New Jersey 

(Received 11 December 1970 and in revised form 24 June 1971) 

The physiology of the cochlea (part of the inner ear) is briefly examined in con- 
junction with a description of the ‘place’ theory of hearing. The role played 
by fluid motions is seen to be of importance, and some attempts to bring fluid 
mechanics into a theory of hearing are reviewed. Following some general fluid- 
mechanical considerations a potential flow model of the cochlea is examined in 
some detail. A basic difference between this and previous investigations is that 
here we treat an enclosed two-dimensional cavity as opposed to one-dimensional 
and open two-dimensional models studied earlier. Also the two time-scale aspect 
of the problem, as a possible explanation for nonlinear effects in hearing, has not 
previously been considered. Thus observations on mechanical models indicate 
that potential flow models are applicable for times of the same scale as the 
frequency of the driving acoustic inputs. For larger time scales mechanical 
models show streaming motions which dominate the qualitative flow picture. 
The analytical study of these effects is left for a future paper. 

1. Introduction 
The cochlea, part of the inner ear, is a small fluid-filled chamber which 

contains the biological structures that convert mechanical acoustic signals into 
neural signals. Of prime interest to the worker in mechanics is the fact that 
not only signal conversion but also signal processing takes place. Thus to fully 
understand the part played by the nervous system in our sense of hearing 
we must also unravel the mechanical aspects of audition. 

A complete physiologically oriented description of the mammalian auditory 
system can be found in Wever & Lawrence (1953); we shall only give a short 
description of auditory physiology with emphasis on the cochlea. We then 
describe mechanical models used by several investigators in their pursuit of 
an understanding of auditory perception and also briefly review previous 
mathematical attempts to describe the function of the cochlea. 

Figure 1 is a schematic representation of the peripheral auditory system, en- 
compassing the outer, middle and inner ear. The essential role of the outer and 
middle ear appears to be that of an impedance matching device which transduces 
airborne acoustic energy into motion of the perilymphatic fluid contained within 
the cochlea. Perilymph is a fluid with approximately the same density and twice 
the viscosity of water. The airborne acoustic signal sets the eardrum into motion 
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which in turn causes motion of the middle ear bones. One of these bones, the 
stapes or stirrup, is attached to a membrane which covers the so-called oval 
window. Another membrane-covered opening in the cochlea, the round window, 
also opens to the middle ear. The cochlea itself consists of a tapered tube wound 
into a spiral. As can be seen from the cross-section shown in figure 2 this tube is 
divided into three ducts. The upper and lower ducts are connected to the middle 
ear via the oval and round windows respectively. The central section is separated 

I-uternal 
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FIGURE 1. Schematic diagram of auditory system. 

from the upper duct by an extremely thin membrane and from the lower duct by 
both a bony shelf and another membrane, the basilar membrane, which is 
attached to the shelf and the outer wall. On this latter membrane sits the organ 
of Corti in which are contained the sensory hair cells. The motion of the hair 
cells induces, by an only dimly understood process, an action potential or neural 
signal in attached nerve fibres. The basilar membrane is narrowest at  the portion 
of the cochlea adjacent to the oval window, widening out, as indicated in figure 1, 
as the apical end is approached. At the apical end of the cochlea there is an 
opening, the helicotrema, joining the two outer ducts. Typical dimensions of a 
human inner ear are indicated in figure 1, where for clarity the cochlea has been 
unwound. 

The so-called ‘place ’ theory of hearing is currently the most generally accepted 
qualitative picture of the hearing process. This theory was first given both serious 
scientific consideration and popularization by Helmholtz ( 1895). According to  
the ‘ place ’ theory portions of the basilar membrane respond selectively to 
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pure tones, the membrane’s motion being greatest at a particular location along 
its length corresponding to the frequency of the exciting tone. Neurons attached 
to the hair cells in the part of the organ of Corti where the basilar membrane 
is undergoing the most extreme excursions are thus excited and hence, crudely 
speaking, the brain is informed as to what portion of the cochlea is undergoing 
the most disturbance. In  this way a mapping is effected of frequency into posi- 
tion and as the basilar membrane is considered to have a variable stiffness, the 
stiffness being largest near the oval window and smallest at  the apical end of 
the cochlea, high frequency tones map into a ‘place’ near the oval window and 
low frequency tones map into a ‘place’ near the cochlea apex. 

eissner’s mcmhrane 

Cochlear duct 

To eighth 
1-lelTT 

FIGURE 2. The cochlea in cross-section. 

BBkBsy (1960), in his observations of motion in animal cochleae, reported that 
the steady-state response of the basilar membrane to a pure tone appeared to 
be a travelling wave which in the course of a period of oscillation moved with 
changing amplitude from the oval window towards the apex of the cochlea. 
The envelope of the wave was reported to peak at a ‘place’ dependent on the 
frequency of the driving tone; after this the wave amplitude rapidly decays. 

The main purpose of Part 1 will be to discuss a two-dimensional mathematical 
model which yields the behaviour observed by BBk6sy. It will become evident 
that a good deal of work still remains to be done before we have a clear under- 
standing of the mechanical aspects of the auditory signal processing which is 
performed in the cochlea. The model presented here, however, is felt to provide 
a logical basis for future efforts, about which we shall say more in the concluding 
section of the paper. 

2. The Bkk6sy-Tonndorf model 
Before passing on to a discussion of the mathematical model we shall consider 

a mechanical analogue of the cochlea used by several investigators, but made 
most popular by BBkBsy and also by Tonndorf (1959). This model was principally 
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used by BBkBsy for the purpose of planning his difficult physiological observations 
of actual cochlea motions. A typical model of the BBkBsy type is shown in 
figure 3. The upper and lower chambers correspond to their counterparts in 
the ear while the central chamber of the inner ear, the scala media, is represented 
by a metal plate with a triangular shaped cut to hold the ‘basilar membrane’ 
and a hole to simulate the helicotrema. Other parts corresponding to inner ear 
structures are indicated in the figure. From observations which he made on the 
cochlea, BBkt5sy felt that most of the significant elastic behaviour of the scala 
media could be attributed to the basilar membrane, hence the simple representa- 
tion used in the model. For an elastic material a rubber cement membrane was 
passed over the triangular cut. We note here that the basilar membrane’s 

Oval windo% -, 
I3asilar membrane 

Helicotrema 

FIGURE 3. Fluid-mechanical model of the cochlea. 

mechanical properties are only dimly known, however, it is fairly certain that 
it is not a membrane in the mechanical sense as indicated by the fact that when 
slits are made in the membrane the edges do not draw apart. Thus the basilar 
membrane does not appear to be under tension. Also, from a static measurement 
made by BBkBsy the stiffness of the basilar membrane appears to vary by a 
factor of 50 to 100 over the membrane’s 35 mm length. 

Observations on models of the type described showed the ‘travelling’ waves 
mentioned above. The flow field, which can be observed in the model by means of 
dispersed aluminium particles, is shown in the photograph presented in figure 4 
(plate 1). This picture is a t ime exposure and hence shows theJlow over many 
cycles of motion of the driving force. We see from the photograph that over the 
course of many cycles the particles drift in an eddy pattern. The origin of the 
drift appears to come from the ‘place’ where the membrane is undergoing its 
maximal excursions and indeed eddy’s’ were used by BBkBsy to pick out the 
‘place ’ of maximal response. I n  the auditory literature these patterns are called 
BBkBsy eddies, and a t  one time or another they have been deemed responsible 
for many of the anomalous results of auditory research. A somewhat misleading 
calculation was made by Zwislocki (1948) in an effort to prove that the eddy 
is unimportant to audition. In  this calculation he simply substituted the results 
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of a crude one-dimensional theory into Bernoulli’s equation and concluded that 
the nonlinear effect was of higher order. He did not account for the mechanism 
of the eddy or examine possible secular effects. 

3. Assumptions for modelling 
A number of investigators have proposed mathematical models which yield 

results that appear to agree, a t  least qualitatively, with the experimental results 
of B6k6sy. It is not our purpose to review this past research in detail here; how- 
ever, we shall devote some discussion to it in order to clearly set out the dif- 
ferences, both in nature and in intent, of the present work. Our work differs in 
three essential ways from past theoretical endeavours. First, we differ in the 
type of mathematical model we use. We consider a two-dimensional enclosed 
cavity, containing a structure of spatially variable elastic properties. At least two 
of these features, but not all of them, are to be found in past formulations. The 
second difference is that we produce a complete (though partially numerical) solu- 
tion to the problem as posed. All past theories were forced to reIax the initial 
formulations in order to arrive at quantitative results. The third and perhaps 
most important difference lies in the intent of our work. The main aim of past 
mathematical theories appears to have been to reproduce as exactly as possible 
the experimental results of B6k6sy. We also have this as a subsidiary aim but 
feel that the important contribution of present day mechanics must allow for 
the realities of experimental difficulties in the field of audition. Some of these are 
that all the important mechanical parameters of the cochlea are not known, that 
BBkBsy’s measurements were taken for only a few animals on dead tissue and at 
amplitude levels far in excess of normal hearing. Thus in our view the task of 
mechanics is to clearly show by rational calculation what type of physical 
phenomena result from a particular set of assumptions. We must answer questions 
such as whether viscosity is important in hearing and what type of nonlinearity 
can be important even a t  the low excitation levels prevalent in normal hearing. 
Before setting forth our remaining assumptions let us briefly discuss some of 
the previous research on cochlea mechanics. 

One group of investigators, as exemplified by Peterson & Bogert (1950), 
Zwislocki (1965) and Hause (1963), have concentrated their efforts on so-called 
long wavelength theories, i.e. they assumed that because the length of the 
cochlea is approximately 35 times its diameter fluid motions normal to the 
surface of the scala media could be ignored. We shall devote some discussion to 
this point at the end of 3 4. The essential point is that because the elastic properties 
undergo rapid change from the oval window to the cochlea apex another charac- 
teristic length is introduced which is of order of the cochlea diameter. Thus it 
is unrealistic to expect the flow to be one-dimensional, especially at the ‘place’ 
where the cochlea partition is undergoing maximal displacements in a direction 
transverse to itself. Two-dimensional motion is evident in model studies as made 
by Tonndorf (and also reproduced by us). At least one past investigator, Ranke, 
formulated several two-dimensional models. Unfortunately his work has been 
almost totally ignored, perhaps because in order to obtain solutions to his 
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boundary-value problems he was forced to make numerous additional approxi- 
mations, e.g. he was not able t o  treat a closed cavity. I n  one paper (Ranke 1950) 
he gives a review of his work and thoughts on the problem and also states that 
the problem of the BBkBsy eddy has received no hydromechanical explanation. 

The remainder of our assumptions have for the most part been used in some 
previous investigation. Thus we shall unwind the spiral cochlea as indeed it is 
in alligators and the platypus. The central duct in the cochlea, which contains 
the organ of Corti and which is enclosed by Reissner’s membrane and the basilar 
membrane, will be represented as a single elastic partition. Also the mechanical 
properties of the partition will be represented by the assumption that each 
point acts as a damped harmonic oscillator, point-to-point coupling being only 
through the surrounding fluid. Not enough is known to prove or disprove this 
assumption at present. The assumption is tantamount to representing the par- 
tition by a mechanical impedance Z(x ,w) ,  where x denotes distance from the 
oval window along the partition. We note that such assumptions do yield good 
results in the description of walls in room response problems (Morse 8: Ingard 
1968). 

We take the perilymph to  be incompressible (Peterson & Bogert treated it 
as compressible, but even in their calculations it is clear that compressibility 
is of minor importance) for if perilymph has about the same sound speed as 
water, which is likely, the wavelength of an acoustic signal at 5000Hz (a high 
frequency for hearing) is about 30 cm while the cochlea is only 35 mm long. In 
the present paper we treat the flow as inviscid but with the difference that we 
consider this as a first step in an expansion procedure. This is important in 
regard to the mechanism of the BBkBsy eddy. Also, in regard to the question of 
viscous effects, it has been claimed that the fluid contained in the scala media, 
endolymph, is extremely viscous (BBkBsy 1960) however modern measurements 
indicate that the mechanical properties of endolymph are the same as perilymph 
(Tonndorf 1959). 

One very notable feature of past work has been the assumption that nonlinear 
mechanical effects can be ignored. The motion of the basilar membrane is small, 
a displacement of 10-6 em corresponding to normal amplitude sound (BBkBsy). 
I n  fact, man can detect sound corresponding to  basilar membrane and eardrum 
displacements of cm. As is well known small amplitude nonlinearities do 
exist in mechanics, though many of them are of a secular nature, i.e. they tend to 
become noticeable over long periods of time. Also, recent experiments, mainly 
in electrophysiology, indicate the presence of nonlinearities in cochlear mechanics 
(Goldstein 1967; Goblick & Pfeiffer 1969). It is a challenge to mechanics to find 
possible mechanisms that might explain these findings. The BBkBsy eddy is a 
secular type nonlinearity and probably not responsible for the experimental 
indications of nonlinear behaviour which make themselves felt over a time scale 
equal to  a period of acoustic wave. As the BBkBsy eddy is to  be understood as 
resulting from the combination of viscous and nonlinear effects, we consider 
our present linear inviscid calculation as the leading term in an asymptotic 
expansion procedure. This is especially important as we wish to understand the 
cochlea-model results where streaming is clearly present. Thus the flow pattern 
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in a cochlea model excited by an oscillatory disturbance exhibits a steady 
streaming motion as well as motions typical of a fluid with a free surface. As the 
excitation is purely oscillatory, the steady motion must result from a nonlinear 
interaction. This type of behaviour is familiar from the theory of acoustic 
streaming (Batchelor 1967; Riley 1967) from which we see that the governing 
parameter for the streaming effect is the Strouhal number S = ol/U.,  where 1 
is a typical length and Urn is the velocity amplitude of the driving oscillation. 
When S 9 1 we expect to see a linear oscillatory boundary layer of thickness of 
O(l/JS).  Nonlinear effects in the boundary layer drive a steady boundary layer 
which in turn drives an outer slow streaming motion (a Stokes flow). The magni- 
tude of the outer streaming velocity is O( l / X ) .  Thus we expect that the streaming 
motion only affects the flow significantly after a number of acoustic periods. 
Also the oscillatory boundary layer has a thickness which is small compared with 
the cochlea diameter. We shall therefore proceed on the assumption that basilar 
membrane motion is primarily controlled by the outer or potential flow. A 
linearized theory is adequate on the time scale of an acoustic period since, for 
the range of frequencies of interest in auditory perception, physical measurements 
show (Bkkhsy 1960) the maximum basilar membrane slope to be sufficiently 
small. In  addition consistency of the numerical results (i.e. those also showing 
small membrane slope) supports use of the linearized equations. These considera- 
tions lead us to postulate as a reasonable mathematical model or, perhaps better, 
analogue of the cochlea, the potential cavity flow model presented below. 

4. Mathematical model 
In  the present paper we shall investigate the simplest mathematical model 

which contains the linear short time scale aspects of cochlea behaviour. A future 
paper will discuss some of the nonlinear mechanical phenomena that may be of 
importance. We shall also ignore the helicotrema, as model experiments indicate 
that its main importance is in transient response (we shall confine our attention 
to steady-state response). 

Thus, for the present we assume linearized two-dimensional potential flow 
in a configuration depicted in figure 5 .  The upper domain where y > 0 will be 
denoted by the subscript 1 while for y < 0 we will use the subscript 2. Where 
necessary we shall characterize the oval and round windows by a constant (in 
space) mechanical impedance. The fluid density is p, the potential is $ with 
V$ = (5, V), where ;ii and V are the x and y fluid velocity components and ;p the 
fluid pressure. Thus the equations characterizing our model are 
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o n x =  0 , O  < y < + I  
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or as an alternative but different condition 
- 
[(y, t )  = F(y, t ) ,  a given function, 

a&pt  = a&lax; 
on x = 0, - 1  < y < 0 

m, a2&pt2 + ro a E 2 p  + k,P, = - p 2 p ,  Y, t ) ,  (7)  

a&pt = a+2/ax, (8) 

while for x = L, a+l/ax = @2/ax = 0 and for 1 yJ  = 1, @,lay = @,jay = 0. In the 
above equations m(x), r(x)  and k(x) specify the basilar membrane’s variable 
mechanical impedance, m(x) denoting its mass per unit area, r(x)  its damping 

s 

FIUURE 5. Potential flow model of the cochlea. 

in dyne sec/cm3 and k ( x )  its stiffness in dyne/cm3. The constant values of these 
parameters for theround and oval window are denoted by m,, ro and k,. Note from 
equations (5a,  b )  that we have the alternative of specifying either a driving 
pressure p0(t) or a driving displacement (equivalent to stapes motion) F(y, t ) ,  
It should be pointed out that such a choice will lead to different results for the 
equivalent input impedance of the cochlea as seen from the oval window. In 
our calculations we shall emphasize (5  b )  as being closer to the input action of the 
stapes. As our interest centres on the model’s steady-state response to a pure 
tone, so that the driving terms have the form Re(F(y)est), where s = iw ,  we 
consider the frequency dependent equations 

V2$, = v24, = 0, (9) 
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where, for example, 3 = Re (est $) and Z = ms + k/s  + r .  
The problem as presented can be simplified somewhat by re-defining the 

arbitrary time functions implied in the introduction of a velocity potential. 
Thus for region 2, where - I  < y < 0, let 5' = - -E, y' = - y, $' = - $z-po/ps, 
p' = -p2+po. The equations in region 2 then become 

p'+ps$' = 0;  

S Z Y  = P2-P,= (Po-P')-P,, 

a$tlayl = 87; 

s z o g  = Po+, a$/ax = S g .  

on y '=  0,O < x < L 

o n x =  0 

Hence we have the identical boundary-value problem for the variables $' and 
p f  as functions of x and y' as for 9, and p ,  as functions of x and y, so that $' = $, 
and p' = p,. The boundary condition on the surface y = yl = 0 is then 

S Z Y  = Po - 2131 
and we need only consider the equivalent one chamber boundary-value problem 
intheregionL@,O<z<L,O<y<1:  

o n y = O  

onx  = 0 

or if 6 is speci$ed 

I n  this latter case it can easily be seen that we must take p ,  = 0. As before, 
a$/ax = 0 on x = L and a$/ay = 0 on y = 1. 

v2q4 = 0, p+ps$ = 0; 

a$py = ST, SVZ = po - 2p; 

a$/ax = 86, ~62, = p0-p ,  

uo = 51s = a+/ax. 

We thus arrive a t  the pressure-input equivalent model 

and 
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The boundary conditions for the velocity input model require 
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8$/8x = Uo(y) on x = 0 (22) 

and a$& - (2ps/Z) $ = 0 on y = 0. (23) 

The condition that the fluid is incompressible or, equivalently, the application 
of Green’s theorem to the above equation shows that any solution must satisfy 
the condition 

The above equations, when cast in non-dimensional variables, take the form 

h 

a&aij = (212) 4 = o on ij = 0, (26) 

= 0 on ij = Jo-, (27) 

a$/aa = 1 on 2 = 0, (28) 

and a&ae = o on 2 = 1, (29) 
where 

B = x / L ,  ij = y / L ,  Z = Z/(pLs),  c$’ = $/(UoL),  v2 = Z2/L2. (30) 

The boundary condition on 2 = 0 is chosen for the case of a uniform imposed 
velocity, i.e. a piston such that E ( 0 ,  y, t )  = U, cos wt. As the typical approach 
in theories of the cochlea has been to assume a priori one-dimensional flow on 
the grounds that a = P/L2 is small it is of some interest to briefly examine the 
validity of one-dimensional theory. 

A formal derivation from the two-dimensional theory is easily obtained as a 
limit-process expansion in o- --f 0. Thus we define the long wavelength variables as 

The equations of motion in the above variables are 

@lag- ( 2 ~ ~ 1 2 )  4 = o on g = 0, (33) 

a&ag= o on g =  1, (34) 

a & z =  1 on 2 = 0, (35) 

and 86/82 = o on 2 = 1. (36) 

The variable 2 is of course a function of 2 and a. For the one-dimensional theory 
to result from the limit a -+ 0 it is necessary that Z(2,  a) = O( 1) as o- 3 0. Then if 

$6 = $0) + o - p  + . . . (37) 

and 
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it is a straightforward matter to show (see, for example, Stokerh( 1957, chapterlI1) 
for a similar derivation) that 

a p p y  = 0 

and d24(O)/dZ2 - (2/Z(O)) qp) = 0, (39) 

with d#O)/d~ = 1 on Z = o (40) 

and d q P ) / d ~  = o on 5 = 1. (41) 

Thus the above result shows that a necessary condition for the one-dimensional 
theory to be plausible is that 

(3 A Z  z =-= O(l/.Ja) = 0 - . 
pLs 

The meaning of this condition here can be seen clearly if we consider the case of 
a purely elastic wall with Z = k/s  and hence 

or, with s = iw, 

Thus it is required in this case that 

Now k l /p  = C2, where C is the wave speed for the equivalent one-dimensional 
system (Lesser & Berkley 1970), hence C/w represents a wavelength and the 
necessary condition for one-dimensional theory is that 

We can only expect a one-dimensional approach to  work everywhere for small w ,  
as 

Even for small w we can expect trouble owing to the rapid variation of the magni- 
tude of 2 as 2 varies. Thus it is no surprise that the fluid motion in cochlea 
models appears to be two-dimensional. 

Another approach to the calculation of the flow pattern would be via an 
approximation of the deep water wave type (Ranke 1950). For this type of 
approach to be valid, as can be seen by analogy with conventional water wave 
theory, the surface wave penetration depth 1Z/ps] should be small in comparison 
with the typical cross-sectional dimension of the cochlea (about 1mm). If Z 
is due to a pure stiffness this is tantamount to having k/ (pw2)  < 0.1 ; however, 
for w = 104 we expect 0.1 >/ k/(pw2) >/ 0.01, over the length of the cochlea. We 
thus must obtain a solution for the enclosed geometry of figure 5. 
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5. Potential flow solutions 
The solution to equations (25)-(29) for a specific 2 is most easily obtained by 

the use of a truncated Fourier series which is determined by the best ‘fit’ to 
the mixed boundary condition (26). The method is straightforward and we only 
outline it here. Thus we assume 

A 

m 

$=2(1-+2)-&)$ + C A ,  cosh [nn(Jc - Q)] cos nn2. 

It can easily be verified that this series automatically satisfies all the boundary 
conditions for the problem except on 9 = 0. This latter condition takes the form 

m 

J(T + f, nnA, sinh (nnJc) cos (nn2) 
0 

I m 

a( 1 - $2) + C A ,  cosh (nnJc) eos nn9 = 0. 
0 

If we truncate the series at  N + 1 terms and use the notation A;v) to denote the 
coefficients of the truncated series we can use the above equation and the ortho- 
gonality of the trigonometric functions to derive a closed set of equations for the 
ALN). As N --f co we expect ALN) -+ A,. The use of a variational principle for 
Laplace’s equation and the Ritz procedure (Schechter 1967) leads to the same 
equations for the A‘,N). Thus we find 

n,=O 

cos nn2 cos mn2 
where cc,, = cosh (nn,lc)j d2 - inn sinh (nn,/c) S,,, 

0 .2 
and 

The procedAme so outlined has given excellent results for a wide range of functional 
forms for Z ( 2 ,  s). The fast Fourier transform algorithm (Cooley & Tukey 1965) 
was used to expedite the evaluation of anm and fm.  

6. Comments on oscillating boundary layer 
The potential flow solution given above can be considered as the first term 

in the outer expansion of the solution for large Strouhal number. It is a relatively 
easy matter to include the solution to this order of the appropriate inner ex- 
pansion. These formal matters will be discussed more fully in a future paper. 
We content ourselves here by commenting that the inner expansion has no 
noticeable effect on the solution to this order. Noticeable effects are only pro- 
duced when we look a t  terms of order 1/(Strouhal number) and steady motions 
occur with purely periodic forces at the oval window. 
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7. Results 
A number of calculations were made using the above model to examine the 

effects of various choices for Z(x,o). A typical case (similar to the Z used in 
Peterson & Bogert 1950; Zwislocki 1965; Hause 1963) chosen was 

with 
2 = iwm + K/(iw) + r ,  

m = 0.05, K = 10’ e-l.5S and 109 e-a ,  and r = 3000 e-l.52. 

The results obtained are shown in figures 6, 7 and 8. In  figure 6 we see the 
wave envelope plus a few plots of the wall shape at  various times in the driving 

I: 

4 

FIGURE 6. Wave envelope and motion of basilar membrane. 
m = 0.05, k = lo7 e-1.5z, T = 3000e-1’55, w = 1000. 

cycle. The qualitative behaviour observed by BBkBsy, i.e. the peaking of the 
profile amplitude at a particular ‘place’ on the wall can be easily seen in this 
figure. The variation of place with frequency is demonstrated in figure 7. In  figure 8 
we show a plot of particle paths for a number of particular fluid particles. Both 
the horizontal and vertical amplitudes of the particle orbits are equally magnified. 
The failure of the one-dimensional transmission line models, which predicts an 
essentially horizontal motion, is most evident in this figure. 

As implied above the quantitative comparison with experimental results is 
tricky. The parameter r ( x )  is not really understood in terms of the mechanics 
of the scala media and in past theories particular investigators have chosen it 
so as to yield agreement with BBkBsy’s data. The particular choice of 2 used 
above was a cross between that used by several past investigators. It should be 
no surprise that with its use we obtain reasonable agreement with the data of 
BBkBsy as shown in table 1 below. (We have used the figures from BBkBsy (1960, 
p. 448).) The one-dimensional or long wavelength theory of Zwislocki also 
achieves general agreement with BBkBsy; however we note the following quota- 
tion from Zwislocki (1965, p. 30): ‘‘ There are no direct data for the acoustic 
resistance R,. Consequently, its numerical value must be adjusted so that the 
theoretical computations agree with V. BBkBsy’s dynamic measurements.’’ 
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It is clear that to some extent the basic physics of the place effect is contained 
in both one- and two-dimensional theories, otherwise it would be unlikely that 
even with the freedom of adjusting constants we could come close to BBkBsy's 
measurements. In  this light, fitting the theoretical results to BBkkby's data could 
be interpreted as a measurement of the scala media equivalent impedance and 

0.1 

Y 

HZ 

mm 

35 mm 

FIGURE 7. Unit velocity excitation at  stapes, showing wave envelopes. 
m = 0.05, k = r = 3000e-1'5z. 

FIGURE 8. Paths of tracer particles. m = 045, k = 107e-1'5z, r = 3000e-1'5z, o = 1000. 

hence of ~(x). Certainly, if two-dimensional effects are significant in the region 
of the place, as they certainly are from both our and Tonndorf's model studies 
and our theoretical work, interpretation of the fitting of theoretical results to 
empirical data as a means of assessing the mechanical properties of the scala 
media necessitates a two-dimensional theory. An aspect of the two-dimensional 
calculations which is perhaps even more important is that they are needed its 
a foundation in the search for significant nonlinear effects. 
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Distance of place from stapes 

Two-dimensional 
theory 

Frequency in Hz BBkBsy (2 from figure 7) 
(mm) (mm) 

100 
200 
400 
800 

31 
28 
24 
20 

TABLE 1 

33 
28 
23 
17 

Finally, we would like once more to stress the two time-scale nature of the 
problem. This is evident in a comparison between figures 4 and 8. Figure 4 
(plate l),  which is a time exposure, shows the flow in a cochlea model over a 
number of periods of the excitation while figure 8 depicts the linear solution over 
a single period. The latter figure agrees very well with what is seen over this 
short time scale. The particle motion in figure 8, being over the long time scale, 
does not show the detailed particle orbits but an average over many periods. For 
the parameters appropriate to the actual cochlea the long time scale is of the 
order of a second and perceptions which take this time to register might well 
be influenced by nonlinear hydromechanical effects. Tonndorf has raised the 
possibility of nonlinear hydromechanical effects but seems to be unaware of the 
possibility of time integrative (secular) nonlinearities. This might be an important 
point in hearing because the amplitudes of motion involved indicate that simple 
amplitude dependent nonlinearities are not significant. The subtlety of nonlinear 
behaviour in the cochlea is indicatedin the experimental work of Goldstein (1967) 
and of Goblick & Pfeiffer (1969), in which they exhibit some nonlinearities that 
are probably only weakly amplitude dependent. The final interpretation of these 
nonlinearities remains an open question in present day theory of audition. 

The authors gratefully acknowledge the advice of Dr R. Lummis and Dr J. A. 
Lewis of Bell Laboratories, Murray Hill, New Jersey. 
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